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Abstract

Existing studies on the fracture of cracked piezoelectric materials have been limited mostly to the electrically im-

permeable and permeable crack models, which represent the limiting cases of the physical boundary condition along the

crack surfaces. This paper presents a study on the electromechanical behaviour of interacting dielectric cracks in pi-

ezoelectric materials. The cracks are filled with dielectric media and, as the result, the electric boundary condition along

the crack surfaces is governed by the opening displacement of the cracks. The formulation of this nonlinear problem is

based on simulating the cracks using distributed dislocations and solving the resulting nonlinear singular integral

equations. Multiple deformation modes are observed. A solution technique is developed to determine the desired de-

formation mode of the interacting cracks. Numerical results are given to show the effect of the interaction between

parallel cracks. Attention is paid to the transition between permeable and impermeable models with increasing crack

opening. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectricity; Dielectric cracks; Electromechanical coupling; Interacting cracks; Deformation-dependent boundary

conditions

1. Introduction

Because of their coupling nature between mechanical and electric fields, piezoelectric materials have been
widely used in electromechanical devices, such as actuators, sensors and transducers. The newly developed
piezoceramic materials with stronger piezoelectric effects are generally brittle and have a tendency to develop
multiple cracks during manufacturing and service processes. As the result, the evaluation of the coupling
between mechanical and electric fields and its effect upon the fracture behavior of this type of piezoelectric
materials are of great importance and have drawn significant attention from the research communities.
Unlike traditional crack problems where the crack surface boundary condition is well defined, the

electric boundary condition along crack surfaces in piezoelectric materials is still one of the fundamental
issues requiring further studies. There are two typical crack models using different electric boundary
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conditions. One is the electrically permeable model proposed by Parton (1976), which has been used in
studying both the static and dynamic fracture behavior of piezoelectric materials (Wang, 2000). Another
one is the impermeable model, which has been extensively used to study the fracture of piezoelectric ma-
terials (e.g., see, Deeg, 1980; Pak, 1990; Suo et al., 1992; Pak, 1992; Park and Sun, 1995). These models
represent two limiting cases where the electric permittivity of the crack is assumed to be infinite and zero,
respectively. To determine the effect of the dielectric medium inside a crack upon the electric boundary
condition, an elliptical crack model (see, McMeeking, 1989; Sosa, 1991; Dunn, 1994; Zhang and Tong,
1996; Zhang et al., 1998) has been used to study the effect of crack opening. Their results indicate that the
permeable condition may underestimate the effect of the electric field on the crack propagation and the
impermeable model may overestimate its effect. It should be mentioned that this elliptical crack model
represents only the effect of the initial crack opening. For a slit crack, since the dielectric constant of
piezoceramic is much higher than that of the air (or vacuum) filling the crack, the electric boundary
condition may be very sensitive to the crack opening caused by the applied mechanical and electric loads. In
this case, the crack can be modelled as a dielectric crack filled with a dielectric medium.
Because of the brittleness of piezoceramic materials, the interaction between multiple cracks may sig-

nificantly affect their fracture property. Although the interaction between cracks in traditional brittle
materials have been extensively studied (e.g., see, Rubinstein, 1986; Chudnovsky et al., 1987; Gong and
Meguid, 1991; Chen and Hasebe, 1994; Meguid and Wang, 1995), relatively fewer studies have been
conducted to deal with the interacting effect of multiple cracks in piezoelectric materials (see, Han and
Wang, 1999; Chen and Han, 1999a,b). No attempt has been made in determining the effect of interaction
between dielectric cracks, for which the electric boundary condition depends on the crack opening.
It is therefore the objective of the current paper to provide a theoretical study of the nonlinear elec-

tromechanical behaviour of interacting dielectric cracks. Based on the use of the dislocation model of the
cracks and the solution of the resulting nonlinear singular integral equations, numerical simulation is
conducted to study the effect of the dielectric medium filling the crack and the crack interaction upon the
fracture behaviour of the cracked medium. Special attention is paid to the transition between permeable
and impermeable crack models with increasing crack opening.

2. Formulation of the problem

The problem envisaged is a generalized plane problem of N interacting parallel cracks in an infinite pi-
ezoelectric medium, as shown in Fig. 1 with the centre of the kth crack being located at ðXk; YkÞ in the global
coordinate system oxy. Local Cartesian coordinate systems ðxk; ykÞ ðk ¼ 1; 2; . . . ;NÞ are used to describe the
cracks, with crack k lying along xk and the origin of ðxk; ykÞ being the centre of the crack. The piezoelectric
medium is assumed to be transversely isotropic with the so-called poling direction being perpendicular to the
crack surfaces. The cracked medium is subjected to a stress field r1

2i ði ¼ 1; 2; 3Þ, with 1, 2, 3 corresponding to
x, y and z, respectively. The applied electric loading at infinity is the electric displacement D1

2 . The cracks are
assumed to be filled with a dielectric medium with negligible elastic constants (air or vacuum).
In the absence of free charges and body forces, the electromechanical behaviour of a piezoelectric me-

dium is governed by the equilibrium equation and the Gauss law,

rij;j ¼ 0; Di;i ¼ 0 ð1Þ

and the constitutive equations,

rij ¼ cijrsers � erijEr; Di ¼ eirsers þ �ijEj ð2Þ

where cijrs, eirs and �ij are elastic, piezoelectric and dielectric constants, respectively, i, j, r, s ¼ 1, 2, 3, with 1,
2, 3 corresponding to x, y and z, respectively. ers and Er are strain and electric field intensity defined by
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ers ¼
1

2

our
oxs

�
þ ous

oxr

�
; Er ¼ � oV

oxr
ð3Þ

with ur and V being the displacement and the electric potential. For the generalized plane problem con-
sidered, it is assumed that ur and V depend only on in-plane coordinates, i.e. ur ¼ urðx; yÞ, r ¼ 1; 2; 3 and
V ¼ V ðx; yÞ. Substituting Eqs. (2) and (3) into Eq. (1) results in the following governing equation of the
problem,

ðQX 2 þ ðRþ RTÞXY þ TY 2Þv ¼ 0 ð4Þ
where X ¼ o=ox, Y ¼ o=oy, and

vT ¼ fu1; u2; u3; V g ð5Þ

Q ¼

c11 c16 c15 e11
c61 c66 c65 e16
c15 c65 c55 e15
e11 e16 e15 ��11

2
664

3
775

R ¼

c16 c12 c14 e21
c66 c26 c25 e26
c56 c46 c54 e25
e16 e12 e14 ��12

2
664

3
775

T ¼

c66 c62 c64 e26
c26 c22 c24 e22
c46 c42 c44 e24
e26 e22 e24 ��22

2
664

3
775

The elements inQ, R, T are material constants in matrix notations. In the following discussions, bold letters
will be used to represent matrices and/or vectors.
Similar to the traditional crack model, the crack surfaces are traction free, i.e. for crack k, following

conditions should be satisfied in the local coordinate system,

Fig. 1. Crack model and the decomposition of the problem.
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rk
2iðxk; 0Þ ¼ 0 ð6Þ

where i ¼ 1, 2, 3 with 1, 2, 3 corresponding to xk, yk and zk, respectively.
Since the dielectric constants of typical piezoelectric materials are 103 times higher than that of the air (or

vacuum) filling the crack, the electric boundary condition along the crack surfaces may be sensitive to the
opening deformation of the crack. To evaluate this effect, the deformed geometry of the crack will be used
in the formulation of the problem. Accordingly, the electric boundary condition along the surfaces of crack
k is,

D
k
2 ¼ ��0

V
kþ � V

k�

dk
2

ð7Þ

where dk
2 ¼ ukþ2 � uk�2 is the opening deformation for crack k, and �0 ¼ 8:85	 10�12 C/Vm is the dielectric

constant of air inside the crack.

3. Fundamental solution for a single dislocation

Although the use of dielectric crack model will induce nonlinear deformation, the nonlinearity will be
limited only to the crack boundary conditions. The interacting cracks can be modelled as the superposition
of distributed dislocations (or jumps of displacements and electric potentials across the crack surfaces).
Consider a dislocation defined by,

dðxÞ ¼ vþ � v� ¼ d0HðxÞ; ð8Þ
with vþ and v� representing the displacement and electric potential along upper and lower surfaces of the
crack as defined in Eq. (5), d0 being a constant vector and HðxÞ being the Heaviside step function.
Eq. (4) can be solved using Fourier transform with respect to x, which yields

�s2Qv
 � isðRþ RTÞ ov



oy
þ T o2v


oy2
¼ 0

with superscript ‘
’ representing Fourier transform. The solution of v
 is generally in the form of

v
 ¼ ae�igy ð9Þ
where a and g can be determined by solving the following eigenvalue problem

½Qþ pðRþ RTÞ þ p2T�a ¼ 0 ð10Þ
with p ¼ g=s. It has been proved that this equation has no real roots (Suo et al., 1992). Let pa be the ei-
genvalues with positive imaginary parts, aa the corresponding eigenvectors, and �ppa and �aaa the conjugates of
pa and aa, which are also the eigenvalues and eigenvectors of Eq. (10). To build a solution which vanishes at
infinity, define ga ¼ pas, �gga ¼ �ppas for s > 0 and ga ¼ �ppas, �gga ¼ pas for s < 0. The general solution of v
 can
then be expressed in terms of a linear combination of solutions given by Eq. (9) for different eigenvalues,
such that

v
 ¼ ðAFfr þ AF0grÞHðsÞ þ ðAFfl þ AF0glÞHð�sÞ ð11Þ
where A ¼ ½a1; a2; a3; a4� and A ¼ ½�aa1; �aa2; �aa3; �aa4� are known matrices determined by the eigenvectors. The
matrices F and F0 are given by

Fðs; yÞ ¼ diag½e�ig1y ; e�ig2y ; e�ig3y ; e�ig4y � ð12Þ

F0ðs; yÞ ¼ diag½e�i�gg1y ; e�i�gg2y ; e�i�gg3y ; e�i�gg4y �: ð13Þ
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f and g are coefficient vectors to be determined with the superscripts r and l representing the right ðs > 0Þ
and left ðs < 0Þ half planes. The corresponding stress and electric displacement fields can be expressed
as,

t ¼ RT ov
ox

þ T ov

ox
ð14Þ

with tT ¼ fr21; r22; r23;D2g.
Applying Fourier transform with respect to x to Eq. (14) and using Eq. (11), the Fourier transform of t is

obtained,

t
 ¼ �isðBFfr þ BF0grÞHðsÞ � isðBFfl þ BF0glÞHð�sÞ ð15Þ
where the matrix B is given by

B ¼ RTAþ TAP ð16Þ
with P ¼ diag½p1; p2; p3; p4�.
The general solution of v and t can then be obtained using the inverse Fourier transform of Eqs. (11) and

(15) as

vðx; yÞ ¼
Z 1

0

ðAFfr þ AF0grÞe�isx dsþ
Z 0

�1
ðAFfl þ AF0glÞe�isx ds ð17Þ

tðx; yÞ ¼ �i
Z 1

0

sðBFfr þ BF0grÞe�isx ds� i
Z 0

�1
sðBFfl þ BF0glÞe�isx ds ð18Þ

From Eqs. (12), (13) and (18), it can be observed that fr ¼ 0, fl ¼ 0 for y > 0, while gr ¼ 0, gl ¼ 0 for y < 0
to ensure that t is bounded at infinity.
At y ¼ 0, F and F0 become the unit matrix I, and the continuity of t along the x axis ðtþ ¼ t�Þ will result

in Bgr ¼ Bfr, Bgl ¼ Bfl. From Eq. (11), the displacement and electric potential difference between the upper
and lower surfaces of the crack is

v
þ � v
� ¼ iHðBfrHðsÞ � BflHð�sÞÞ ð19Þ
where

H ¼ �2ImðAB�1Þ ð20Þ
H is symmetric and only the last element h44 is negative (Suo et al., 1992). For a dislocation defined by Eq.
(8), the Fourier transform of the jump of v across the crack surfaces can be determined, such that

v
þ � v
� ¼ � 1

2p
d0

is
ð21Þ

Substituting Eq. (21) into Eq. (19) gives

HBfr ¼ d0

2ps
; s > 0

HBfl ¼ � d0

2ps
; s < 0

ð22Þ

The Fourier transform of the stress and electric displacement fields due to a dislocation given by Eq. (8) can
then be obtained using Eqs. (15) and (22), as

t
 ¼ �iH�1 d0

2p
sgnðsÞ ðy ¼ 0Þ ð23Þ
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t
þ ¼ �iðBF0B�1
H�1Þ d0

2p
HðsÞ þ iðBF0B�1H�1Þ d0

2p
Hð�sÞ ðy > 0Þ ð24Þ

t
� ¼ �iðBFB�1H�1Þ d0
2p
HðsÞ þ iðBFB�1

H�1Þ d0
2p
Hð�sÞ ðy < 0Þ ð25Þ

The stress and electric displacement fields can be obtained using the inverse Fourier transform of Eqs. (23)–
(25) as

tðx; yÞ ¼ � B1
1

xþ piy

� �"
þ B2

1

xþ �ppiy

 !#
H�1d0 ð26Þ

where

B1
1

xþ piy

� �
¼ i 1
2p

Z 1

0

BFB�1 e�isx HðsÞds ð27Þ

B2
1

xþ �ppiy

 !
¼ i 1
2p

Z 1

0

BF0B
�1
e�isx HðsÞds ð28Þ

4. Interacting dielectric cracks

Consider now the interaction between multiple cracks shown in Fig. 1. This problem can be decomposed
into two subproblems (b) and (c) with problem (b) containing only the homogeneous medium without any
cracks, and problem (c) being concerned with the multiple cracks subjected to external loads along the
deformed crack surfaces. The interacting cracks in subproblem (c) can be generally simulated using dis-
tributed dislocations along the crack lines. By superimposing the single dislocation solution given by Eq.
(26), the stress and electric displacement fields caused by the kth crack can be expressed in the local co-
ordinate system ðxk; ykÞ as,

tðxk; ykÞ ¼ �
Z ak

�ak

B1
1

ðxk þ piykÞ � n

� �"
þ B2

1

ðxk þ �ppiykÞ � n

 !#
Ck0 ðnÞdn ð29Þ

where 2ak is the crack length and Ck ¼ H�1dk with dkðxÞ ¼ vkþðx; 0Þ � vk�ðx; 0Þ. The superscripts ‘þ’ and ‘�’
represent the upper and lower surfaces of the cracks, respectively. The stress and electric displacement fields
caused by kth crack at the location of lth crack can be expressed in the local coordinate system ðxl; ylÞ as,

tlkðxl; ylÞ ¼
Z ak

�ak

B1
1

n � ðxl þ xlk þ piylkÞ

� �"
þ B2

1

n � ðxl þ xlk þ �ppiylkÞ

 !#
Ck0 ðnÞdn ð30Þ

where xlk ¼ Xl � Xk and ylk ¼ Yl � Yk.
In problem (c) of Fig. 1, according to the deformed geometry, each crack should satisfy the following

boundary conditions, which are consistent with the original boundary conditions (6) and (7),

rkþ
2i ¼ rk�

2i ¼ �r1
2i ð31Þ

Dkþ
2 ¼ Dk�

2 ¼ Dk
2; Dk

2 þ D1
2 þ �0

dk
2

ðV kþ � V k�Þ þ �0E1
2 ¼ 0 ð32Þ
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where E2 is the applied electric field intensity. Since the dielectric constants of piezoceramic materials are
typically 103 times higher than �0, the additional term �0E1

2 can be ignored in comparison with D1
2 . The

boundary conditions (31) and (32) can be written in a matrix form as,

XN
k¼1
tlk þ t0 þ Klðvlþ � vl�Þ ¼ 0 ðl ¼ 1; 2; . . . ;NÞ ð33Þ

where t0 ¼ fr1
21; r

1
22; r

1
23;D

1
2 g

T
and the only nonvanishing elements of matrices Kl is kl44 ¼ �0=dl

2.
Substituting Eq. (30) into the general boundary conditions (33), the following nonlinear singular integral

equations can be obtained,

1

p

Z al

�al

Cl0 ðnÞ
n � xl

dn þ
XN
k 6¼l

Z ak

�ak

B1
1

n � ðxl þ xlk þ piylkÞ

� �" 
þ B2

1

n � ðxl þ xlk þ �ppiylkÞ

 !#
Ck0 ðnÞdn

!

þ t0 þ KlHClðxlÞ ¼ 0 ðl ¼ 1; 2; . . . ;NÞ ð34Þ

The integral equations given in Eq. (34) are characterized by square root singularity and, therefore, the
general solution of them can be expressed as,

Ci0ðnÞ ¼
X1
m¼1
Cl

mTm
n
al

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

a2l

s,
ð35Þ

where Cl
m ¼ fcl1m; cl2m; cl3m; cl4mg

T
are unknown vectors to be determined and Tmðn=alÞ are the first kind of

Chebyshev polynomials of the mth order.
Substituting Eq. (35) into Eq. (34), the following nonlinear algebraic equations can be obtained,

X1
m¼1
Cl

m

sin m cos�1 xl
al

� �
sin cos�1 xl

al

� � þ
XN
k 6¼l

X1
m¼1

Z ak

�ak

ðB1 þ B2ÞCk
mTm

n
ak

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

ak

� �2s
dn

,

�
X1
m¼1
MlCl

m

al
m
sin m cos�1

xl
al

� �
¼ �t0 ðl ¼ 1; 2; . . . ;NÞ ð36Þ

where

Ml ¼

0 0 0 0
0 0 0 0
0 0 0 0

h41
�0
dl
2

h42
�0
dl
2

h43
�0
dl
2

h44
�0
dl
2

2
664

3
775 ð37Þ

dl
2 ¼ �

X1
m¼1

½h21cl1m þ h22cl2m þ h23cl3m þ h24cl4m�
al
m
sin m cos�1

xl
al

� �
ð38Þ

The unknown parameters Cl
m can be determined by solving Eq. (36), from which the electromechanical

behaviour of the interacting crack can be predicted. The governing equation (36) is assumed to be satisfied,
for each crack, atM collocation points xn ¼ al cosððn� 1Þp=ðM � 1ÞÞ (n ¼ 1; 2; . . . ;M) and the Chebyshev
polynomials are truncated atMth term. The governing equations are then reduced to a system of algebraic
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equations. The mechanical and electric behaviour of interacting dielectric cracks can be determined by
solving these equations.

5. Fracture parameters

The singular stress and electric displacement t ahead of the tip of the lth crack can be expressed as,

tlðxlÞ ¼
klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðxl � alÞ
p ðl ¼ 1; 2; . . . ;NÞ ð39Þ

and the jumps of the displacement and electric potential across the crack surfaces are

dlðxlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðal � xlÞ

p

r
Hkl ðl ¼ 1; 2; . . . ;NÞ ð40Þ

where kl ¼ fKl
II;K

l
I ;K

l
III;K

l
IVg

T
with Kl

I , K
l
II, K

l
III and Kl

IV being the stress intensity factors and the electric
displacement intensity factor, respectively, which are given by

kl ¼ � ffiffiffiffiffiffiffi
pal

p XM
m¼1
Cl

m ðl ¼ 1; 2; . . . ;NÞ ð41Þ

It is well known that the usage of energy release rate in predicting the fracture of cracked piezoelectric
media has a drawback. Using this fracture criterion, it is predicted that the electric field always impedes the
crack propagation, which is in contradict with the existing experimental results (McHenry and Koepke,
1983; Tobin and Pak, 1993 for examples). As mentioned by Park and Sun (1995), total energy release rate
may not be a suitable fracture criterion for piezoelectric materials. To describe the mechanical deformation,
it is interesting to consider the property of the crack opening displacement (COD). In the current case, a
COD intensity factor KCOD can be used to describe the opening deformation of the crack surfaces, which is
defined by

Kl
COD ¼ lim

xl!al

dl
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

al � xl
p ¼

ffiffiffi
2

p

r
fh21 h22 h23 h24gkl ðl ¼ 1; 2; . . . ;NÞ ð42Þ

and can be determined directly from the results of kl.
In the following discussions, both kl and KCOD will be used to describe the fracture behaviour of in-

teracting cracks.

6. Results and discussion

Attention will be focused on the case where the cracked medium is subjected to a tensile mechanical load
r1
22 > 0 and an electric load D1

2 (or E
1
2 ). For such a plane problem, the corresponding Q, R and T are the

follows,

Q ¼
c11 0 0
0 c33 e31
0 e31 ��11

2
4

3
5

R ¼
0 c12 e12
c33 0 0
e31 0 0

2
4

3
5
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T ¼
c33 0 0

0 c22 e22
0 e22 ��22

2
4

3
5

with the materials constants being

c11 ¼ 13:9	 1010 N=m
2

c12 ¼ 7:43	 1010 N=m2

c22 ¼ 11:5	 1010 N=m
2

c33 ¼ 2:56	 1010 N=m
2

e12 ¼ �5:2 C=m2

e22 ¼ 15:1 C=m2

e31 ¼ 12:7 C=m2

�11 ¼ 6:45	 10�9 C=Vm

�22 ¼ 5:62	 10�9 C=Vm

6.1. Solution techniques

An iteration process has been used to solve the nonlinear Eq. (36), which can be expressed as,

XM
m¼1
Clðnþ1Þ

m

sin m cos�1 xl
al

� �
sin cos�1 xl

al

� � þ
XN
k 6¼l

XM
m¼1

Z ak

�ak

ðB1 þ B2ÞCkðnÞ
m Tm

n
ak

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

ak

� �2s
dn

,
�
XM
m¼1
MlðnÞClðnÞ

m

al
m
sin m cos�1

xl
al

� �
¼ �t0 ðl ¼ 1; 2; . . . ;NÞ ð43Þ

Numerical simulation indicates that the solution of Eq. (43) is not unique, i.e. two solutions corresponding
to positive opening and negative opening (overlapping) for each crack can be obtained. For the case where
two cracks are involved, four different modes can be predicted, i.e. both cracks are open; the first open and
the second overlapping; the first overlapping and the second open; both overlapping. More complicated
deformation modes can be observed when more cracks are involved. i.e. for N cracks, 2N solutions exist. An
overlapping crack may indicate the closure of the crack. For the current parallel crack problem, however, it
is believed that a closed crack is physically impossible. This is because as soon as a crack is closed, the
electric potential will be continuous across the crack surfaces. As the result, electric field will have no effect
on this crack, and the applied tensile stress perpendicular to the crack will result in a crack opening. With
this in mind, only the open-crack mode is considered in the current discussion.
To clearly identify the open-crack mode, a simplified solution is developed considering only one term in

the Chebyshev polynomial expansion of the electric displacement Cl
41 in Eq. (43), whileM terms of cl1j, c

l
2j,

cl3j, ðj ¼ 1; 2; . . . ;MÞ, are still used. This treatment enables the determination of different response modes
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analytically. In this case,M collocation points along the surfaces of each crack are used for the mechanical
boundary conditions, however, only the central point is used for electric boundary condition. The solution
of Cl

41 corresponding to an open crack can be determined directly from Eq. (43).
The accuracy of the single-term solution mentioned above is verified by considering the interaction of

two parallel cracks of the same length (2a ¼ 2 mm), shown in Fig. 2, subjected to applied electromechanical
loads r1

22 and D
1
2 , for the case where the distance between the cracks is 1:0a. Fig. 2(a) shows the comparison

between the maximum crack opening at the centre of the crack determined by the single-term solution and
that by the complete solution obtained from Eq. (43) using 13 terms in the Chebyshev polynomial ex-
pansion. Fig. 2(b) shows the corresponding comparison between the stress intensity factors at the right tip
of the crack determined by single-term and complete solutions. Good agreement between the two solutions

Fig. 2. (a) The maximum crack opening of two parallel cracks (h ¼ 1:0a), (b) the normalized stress intensity factor at the right tip of
one crack in two parallel crack problem (h ¼ 1:0a), (c) the electric displacement distribution along the crack surface for two parallel
crack problem (h ¼ 1:0a).
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can be observed. The variation of D
k
2 along the crack surface obtained by the complete solution is depicted

in Fig. 2(c), showing that D
k
2 keeps almost constant. It is interesting to mention that a constant D

k
2 dis-

tribution along the crack surface can be predicted by the first term of the Chebyshev polynomial expansion.
Based on these results, the single-term solution will be used in the following discussion.
In this section, the interacting effect between the parallel cracks is represented by the traditional stress

intensity factors, electric displacement intensity factor, COD intensity factor and energy release rate. The
effect of electric boundary conditions upon the fracture property of piezoelectric materials is also described
for different cases.

6.2. Interaction effect

The interaction between three equally spaced parallel cracks of the same size (2a ¼ 2 mm) is studied. The
system is subjected to a remote electromechanical loading r1

22 ¼ 20 MPa and D1
2 ¼ 0:001 C/m2. Fig. 3

shows the normalized stress intensity factors kI ¼ KI=KS
I , kII ¼ KII=KS

I (with superscript S representing the
corresponding intensity factors of one crack problem) for three cracks for different distance h between the
adjacent cracks. The shielding effect on stress intensity factor KI exists for these cracks, e.g. all normalized
intensity factors kI are less than 1, which is similar to that in traditional materials. KII can be observed due
to the interaction. The normalized stress intensity factor kIIð1Þ is approximately 25% of kIð1Þ when the
distance between the cracks is 0:4a.
Fig. 4 shows the normalized electric displacement intensity factor kD ¼ KD=KS

D for two parallel cracks of
the same size (2a ¼ 2 mm) under an electromechanical loading r1

22 ¼ 20 MPa and D1
2 ¼ 0:001 C/m2. The

corresponding results kPD for electrically permeable cracks and kID for electrically impermeable cracks are
also given to show the coupled effect of boundary conditions and crack interaction. Changes of the
shielding effect with different electric boundary conditions can be observed. For materials with weak pi-
ezoelectric effect, it is found that the shielding effect upon kD for permeable, impermeable and the current
models are significantly different.
The stress intensity factors of two parallel cracks of different sizes 2a1 ða1 ¼ 1 mmÞ and 2a2, normalized

by the corresponding single crack solutions, are depicted in Fig. 5. The distance between the cracks is

Fig. 3. The normalized stress intensity factors of interacting cracks.
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assumed to be a1 and the cracks are centrally aligned. With the increase of the length of the second crack a2,
the shielding effect on the first crack increases, but the effect on the second crack decreases.

6.3. Effects of the electric boundary condition

Another important issue in determining the fracture property of the cracked piezoelectric medium is the
electric boundary condition. Fig. 6 shows the energy release rate of one of the two parallel cracks as de-
picted in Fig. 4 subjected to r1

22 ¼ 20 MPa. The distance between the cracks is assumed to be a. The re-
sulting energy release rate G is bounded by GI and GP for the applied electric field considered, with GI and
GP corresponding to the electrically impermeable and permeable boundary conditions along the crack

Fig. 4. The normalized electric displacement intensity factor in two parallel crack problem.

Fig. 5. The normalized intensity factors of interacting cracks (h ¼ a1).
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surfaces. Fig. 7 shows the corresponding results for the central crack of three equally spaced parallel cracks
as that in Fig. 3. It can be observed that neither GI nor GP can be used to provide a reasonable prediction of
the energy release rate.
To describe the mechanical deformation, COD intensity factor KCOD in Eq. (42) is studied. Figs. 8 and 9

show the variation of KCOD with applied electric field intensity E1
2 for the parallel crack problems studied in

Figs. 4 and 3 subjected to r1
22 ¼ 20 MPa, with the distance between the adjacent cracks being a. The

corresponding results KICOD and KPCOD using electrically impermeable and permeable crack models are also
provided in these figures for comparison. It can be observed that KCOD increases monotonically with in-
creasing electric field. Significant difference between the results from impermeable, permeable and current
crack models can be observed, indicating the necessity of considering the effect of the dielectric medium
inside the crack. It is interesting to mention that if KCOD is used as a fracture parameter, it can be predicted

Fig. 6. Energy release rate of one crack in two parallel crack problem (h ¼ a).

Fig. 7. Energy release rate of the central crack in three parallel crack problem (h ¼ a).
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that the crack propagation can be either enhanced or impeded depending on the direction of the applied
electric field as predicted by Park and Sun (1995) using strain energy release rate as the fracture criterion.
Fig. 10 shows the result of KCOD of one of the two parallel cracks as discussed in Fig. 8 for different

applied tensile stress r1
22, for the case where the applied electric field intensity is E ¼ 500 V/mm. It shows

that KCOD for the current model is between KICOD (impermeable model) and K
P
COD (permeable model), and is

closer to the result of the electrically permeable model when the stress level is low, but closer to that of the
electrically impermeable model with the increase of the stress level. The corresponding electric displacement
intensity factor KD is given in Fig. 11 for the case discussed in Fig. 10. Similar to KCOD, KD approaches
permeable and impermeable models for low and high tensile stress levels, respectively. This is because
higher stress level will result in larger crack opening and therefore create an ‘impermeable’ crack. This

Fig. 8. COD intensity factor of one crack in two parallel crack problem (h ¼ a).

Fig. 9. COD intensity factor of the central crack in three parallel crack problem (h ¼ a).
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phenomenon indicates the transition between the electrically permeable and impermeable models with the
increase of the crack opening.

7. Conclusions

A theoretical study is provided to the plane problem of an infinite piezoelectric medium with multiple
parallel dielectric cracks. The deformed crack geometry is used for formulating the nonlinear electric
boundary condition. Attention is focused on the effects of the interaction between cracks and the loading
dependent boundary condition on the fracture property. In addition to the well-known shielding effect for
multiple crack problems, the current study indicates that the commonly used permeable and impermeable

Fig. 10. COD intensity factor for two parallel crack problem subjected to an electric field (h ¼ a).

Fig. 11. Electric displacement intensity factor for two parallel crack problem subjected to an electric field (h ¼ a).
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crack models represent two limiting cases which may not be suitable for predicting the fracture behaviour
of cracked piezoelectric medium in some cases.
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